
Epitech Documentation

C Coding Style
Keep your code nice and clean

6

The Epitech C Coding Style is a set of rules that have been created within the school, and that you have to
follow.

It covers:

• the organization of the delivery repository;
• the naming of identifiers;
• the overall presentation (paragraphs);
• the local presentation (lines);
• source files and headers;
• Makefiles.

It is compulsory on all programs written in C as part of Epitech’s projects, regardless of the year or unit, as
long as a langage to program in is imposed.

It applies to all source (.c) and header files (.h) present in the repository, as well asMakefiles.

Adopting a coding style makes reading code written by others easier. As such, it facilitates group work, as
well as help given to you by the educational team and the assistants.

It is also an excellent way to encourage structuring the code and making it clearer, and thus facilitates:

• its reading;
• its debugging;
• its maintenance;
• its internal logic definition;
• its reusability;
• writing tests;
• adding new features;
• and even more. . .

A clean and structured code always feels nice to look at, so give yourself this treat. ;)

When you are facing a choice and you do not know what decision to make, always ask
yourself which one helps you make your code clearer, ergonomic and flexible.

In case of uncertainty or ambiguity regarding the principles and rules specified in this document, please
refer to your local educational manager.

1

Rules are categorized into 4 severity levels: fatal ,major ,minor and info .

Fatal rules are related to the objective itself of programming in C. Violating even once a fatal rule will
make your project rejected and not evaluated at all.
Major rules are related to the structure of the code and to practices that are detrimental to the production
of a code of good quality. Violating any of the major rules (even once) is a major problem and must be
corrected as a priority concern.
Minor rules are generally related to the visual presentation of the code, which can make the code dif-
ficult to read if not followed consistently. Repeatedly violating minor rules must be avoided, as it creates
inconsistently formatted code, which in turn makes it harder to read.
Info rules are related to specific trivial points that are not as important as other rules. Each of these rules
are however anchored in good practices, and should as such be followed to ensure a code of the best quality
possible.

There aremany andmanyways to produce unclean code, and as suchmany rules to follow in order to avoid
them.
Even though one cannot mention all of them in this document, they still have to be respected.
We call them implicit rules when not explicitly defined in this document.

Implicit rules are considered as infos .

The Coding Style is a purely syntactic convention, so it can not be used as an excuse if
your program does not work. ;)

Although following the coding style is not required in all projects, this is not a reason for
not always sequencing and structuring your code.
Most of the rules in this coding style can be applied to all languages, so they can be
useful when you are doing projects in different languages.

It is easier and quicker to follow the coding style from the beginning of a project rather
than to adapt existing code at the end.

This document is inspired by the Linux Kernel Coding Style, and is freely adapted from
Robert C. Martin’s excellent book Clean Code.

2

https://www.kernel.org/doc/html/v4.10/process/coding-style.html

BANANA
The adherence to the coding style is partially checked during evaluations by a tool called the Bot Analyzing
Nomenclature And Nonsensical Arrangements, better known as Banana.
You can (and should) also use this tool to check that your code follows a good portion of the rules.
Other rules are checked manually, with the great tool that are your eyes.

The rules are tagged with three possible levels of support by Banana:

• : the rule is completely checked by Banana;
• : the rule has to be checked manually (Banana does not support it);
• : some parts of the rule are checked by Banana, other parts have to be checked manually.

USING BANANA

Using Banana is very simple:

1. Ensure that Docker is installed on your machine.
2. Clone the Epitech coding style checker scripts repository.
3. Launch the appropriate script depending on your operating system (coding-style.sh for Unix-based

OS, coding-style.ps1 for Windows).
4. You have your results!

The script will make sure that you always have the latest version of Banana.

BANANA SOURCE REPOSITORY

The Banana source repository is publicly accessible.

If you find any problem or have any question regarding Banana, you can open an issue there, and a Banana
developer will happily answer you.

You can even contribute to Banana yourself if you want! ;)

3

https://github.com/Epitech/coding-style-checker
https://github.com/Epitech/banana-coding-style-checker

C-O - FILES ORGANIZATION

C-O1 - CONTENTS OF THE REPOSITORY

The repositorymust not contain compiled (.o, .a, .so, . . .), temporary or unnecessary files (*~, #*#, etc.).

Git has a wonderful way to help you keep your repository clean. ;)

C-O2 - FILE EXTENSION

Sources in a C programmust only have .c or .h extensions.

C-O3 - FILE COHERENCE

A source file must match a logical entity, and group all the functions associated with that entity.
Grouping functions that are not related to each other in the same file has to be avoided.

You are allowed to have 10 functions (including at most 5 non-static functions) in total per file.

Beyond these amounts, youmust subdivide your logical entity into several sub-entities.

C-O4 - NAMING FILES AND FOLDERS

The name of the file must define the logical entity it represents, and thus be clear, precise, explicit and
unambiguous.

For example, files like string.c or algo.c are probably incorrectly named.
Names like string_toolbox.c or pathfinding.c would be more appropriate.

All file names and folders must be in English, according to the snake_case convention (that is, only com-
posed of lowercase, numbers, and underscores).

Abbreviations are tolerated as a way to significantly reduce the size of a name only if it
does not lose its meaning.

4

https://www.w3schools.com/git/git_ignore.asp

C-G - GLOBAL SCOPE

MULTILINE STATEMENTS

Multiline statements are allowed.

Here are examples of properly segmented multiline statements:
bool is_between (unsigned int n, unsigned int low_bound ,

unsigned int high_bound , const char * fail_message);

int main(void)
{

printf ("[%s] %s: %dn", get_element_type (), get_element_name (),
get_element_value ());

my_putstr (" Writing multiline statements in C is easy ,"
" you just need to break the line , and you are done!");

if (call_to_a_function_with_a_long_but_descriptive_name ()
&& (call_to_another_function_inside_parentheses ()

|| call_to_function_if_the_first_one_did_not_succeed ())
&& final_call_to_function_to_demonstrate_multiline ()) {
i_am_a_teapot (418);

}
}

Donot use thebackslash character (\) to break lines inC files, because itwill only visually
break the line.
As such, you will get into trouble regarding the coding style’s rules!

5

C-G1 - FILE HEADER

C files (.c, .h, . . .) and every Makefiles must always start with the standard header of the school.
This header is created in Emacs using the Ctrl + c Ctrl + h command.

For C files:
/*
** EPITECH PROJECT , $YEAR
** $NAME_OF_THE_PROJECT
** File description :
** No file there , just an epitech header example .
** You can even have multiple lines if you want!
*/

For Makefiles:
##
EPITECH PROJECT , $YEAR
$NAME_OF_THE_PROJECT
File description :
No file there , just an epitech header example .
You can even have multiple lines if you want!
##

Always add a meaningful description of the file, you have a unlimited amount of line to
do so.

C-G2 - SEPARATION OF FUNCTIONS

Inside a source file, implementations of functions must be separated by one and only one empty line.

6

C-G3 - INDENTATION OF PREPROCESSOR DIRECTIVES

The preprocessor directives must be indented according to the level of indirection.

Indentation must be done in the same way as in the C-L2 rule (groups of 4 spaces, no
tabulations).
However, preprocessor directives must be indented independently of all the other
code.

ifndef WIN32
include <stdbool .h>
#if defined (__i386__) || defined (__x86_64__)

const size_t PAGE_SIZE = 4096;
#else

#error " Unknown architecture "
#endif

struct coords {
int x;
int y;

};
#endif

C-G4 - GLOBAL VARIABLES

Global variables must be avoided as much as possible.
Only global constants should be used.

A constant is considered as such if and only if it is correctly marked with the const key-
word. Watch out, this keyword follows some particular and sometimes surprising rules!

const float GOLDEN_RATIO = 1.61803398875; /* OK */
int uptime = 0; /* C-G4 violation */

C-G5 - include

include directives must only include C header (.h) files.

7

C-G6 - LINE ENDINGS

Line endings must be done in UNIX style (with \n).

\r must not be used at all, anywhere in the files.

git config can help you keep your lines correctly ended.

C-G7 - TRAILING SPACES

No trailing spacesmust be present at the end of a line.

C-G8 - LEADING/TRAILING LINES

No leading empty linesmust be present.
Nomore than 1 trailing empty linemust be present.

Make sure you also follow the C-A3 rule.

C-G9 - CONSTANT VALUES

Non-trivial constant values should be defined either as a global constant or as a macro.

This greatly helps you when you want to modify an important value in your program, because you do not
need to find all occurences of this value scattered throughout your code, and only need to change it in one
place.

C-G10 - INLINE ASSEMBLY

Inline assemblymust never be used.

Programming in C must be done. . . in C.

8

C-F - FUNCTIONS

C-F1 - COHERENCE OF FUNCTIONS

A function shouldonly doone thing, notmixdifferent levels of abstraction, and respect the single-responsibility
principle (a function should be changed only for one reason).

For example, a call to malloc(), a call to allocate_user(), and a call to create_user() all
have 3 different levels of abstraction.

C-F2 - NAMING FUNCTIONS

The name of a function must define the task it executes and must contain a verb.

For example, the vowels_nb() and dijkstra() functions are incorrectly named.
get_vowels_number() and search_shortest_path() are more meaningful and precise.

All functionnamesmustbe inEnglish, according to the snake_case convention (meaning that it is composed
only of lowercase, numbers, and underscores).

Abbreviations are tolerated if they significantly reduce the name without losing mean-
ing.

C-F3 - NUMBER OF COLUMNS

The length of a line must not exceed 80 columns (not to be confused with 80 characters).

A tab represents 1 character, but several columns.

The line break character (\n) is part of the line, and thus counts in its length.

Even though this rule especially applies to functions, it applies to all C files, as well as
Makefiles.

9

https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Single_responsibility_principle

C-F4 - NUMBER OF LINES

The body of a function should be as short as possible, and must not exceed 20 lines.
int main(void) /* this function is 2-line -long */
{

printf ("hello , world \n");
return 0;

}

The maximum length of a function is inversely proportional to the complexity and indentation level of
that function. case-statement, where you have lots of small things for a lot of different cases, it’s OK to
have a longer function.

Linus Torvalds, Linux Kernel Coding Style

C-F5 - NUMBER OF PARAMETERS

A function must not have more than 4 parameters.
Writing variadic functions is allowed, but they must not be used to circumvent the limit of 4 parameters.

C-F6 - FUNCTIONS WITHOUT PARAMETERS

A function taking no parameters must take void as a parameter in the function declaration.
phys_addr_t alloc_frame (); /* C-F6 violation */
phys_addr_t alloc_frame (void); /* OK */

The two syntaxes above have different meanings, and have different interesting be-
haviours.

C-F7 - STRUCTURES AS PARAMETERS

Structures must be passed to functions using a pointer, not by copy.
void make_some_coffee (struct my_struct *board , int i); /* OK */

void make_some_poison (struct my_struct board , int i); /* C-F7 violation */

10

https://stackoverflow.com/a/41805712
https://stackoverflow.com/a/41805712

C-F8 - COMMENTS INSIDE A FUNCTION

Theremust be no comment within a function.
The function should be readable and self-explanatory, without further need for explanations inside it.

The length of a function is inversely proportional to its complexity, so a complicated
function should be short.
In that case, a header comment (just above the prototype) should be enough to explain
it.

C-F9 - NESTED FUNCTIONS

Nested functions are not allowed, because they are an extension of the GNUC standard, and because they
greatly increase complexity.

11

C-L - LAYOUT INSIDE A FUNCTION SCOPE

C-L1 - CODE LINE CONTENT

A line must correspond to only one statement.
Typical situations to avoid include:

• several assignments on the same line;
• several semicolons on the same line used to separate several statements;
• an assignment in a control structure expression;
• a condition and a statement on the same line.

The only exception to this rule is the for loop control structure, for which one statement is allowed in each
of the three parts (initialization, loop condition, and post-iteration operation).
a = b = c = 0; /* C-L1 violation */
a++; b++; /* C-L1 violation */
if ((ptr = malloc (sizeof (struct my_struct))) != NULL) /* C-L1 violation */
if (cond) return (ptr); /* C-L1 violation */
for (int i = 0; i < 42; i++) { /* OK */

...
}
for (int i = j = 0; i < 42; i++) { /* C-L1 violation */

...
}
for (int i = 0; i < 42; i++, j--) { /* C-L1 violation */

...
}

C-L2 - INDENTATION

Each indentation level must be done by using 4 spaces.
No tabulationsmay be used for indentation.

When entering a new scope (e.g.: control structure), the indentation level must be incremented.
// OK
int main(void)
{

char letter = 'H';
int number = 14;

if (letter == 'H') {
my_putchar ('U');

} else if (letter == 'G') {
if (number != 10)

my_putchar ('O');
else {

my_putnbr (97);
}

}
}

12

// Incorrect
int main(void)
{
int i;
}

// Incorrect
int main(void)
{

if (true) {
return (0);
}

}

// Incorrect and ugly
int main(void)

{
char letter = 'H';
int number = 14;

if (letter == 'H') {
my_putchar ('U');

} else if (letter == 'G') {
if (number != 10) {

my_putchar ('O');
} else {

my_putnbr (97);
}

}
}

Comment blocks’ bodies can be freely indented (with spaces):
// The comment block below is valid , even though it is indented with only one space
/**

* @brief Something
*
* @param path
* @return void*
*/

void * something (const char *path);

13

C-L3 - SPACES

When using a space as a separator, one and only one space character must be used.

Tabulations cannot be used as a separator.

Always place a space after a comma or a keyword (if it has arguments).

However, there must be no spaces between the name of a function and the opening parenthesis, after a
unary operator, before a semicolon, or before a comma.

In the precise case of a for control structure, if a semicolon inside the parentheses is not immediately fol-
lowed by another semicolon, itmust be followed by a space.

All binary and ternary operatorsmust be separated from their arguments by a space on both sides.

return is a keyword, but sizeof is an unary operator.

return 1; /* OK */
return (1); /* OK */
return (1); /* C-L3 violation */
return (1 + 2); /* C-L3 violation */
break; /* OK */
break ; /* C-L3 violation */
add_numbers (1, 2); /* OK */
add_numbers (1 , 2); /* C-L3 violation */
sum = term1 + 2 * term2 ; /* OK */
s = sizeof (struct file); /* OK */
s = sizeof (struct file); /* C-L3 violation */
for (size_t i; str[i] != '\0 '; i++) { /* OK */

...
}
for (size_t i;str[i] != '\0 ' ; i++) { /* C-L3 violation (twice) */

...
}

14

C-L4 - CURLY BRACKETS

Opening curly brackets must be at the end of the line, after the content it precedes, except for functions
definitions where they must be placed alone on their line.
Closing curly bracketsmust be alone on their line, except in the case of else/else if/do while control struc-
tures, enum declarations, or structure declarations (with or without an associated typedef).

In the case of a single-line scope, omitting curly brackets is tolerated, but you should
think about all the modifications you will have to make if you want to add a new state-
ment to the block. This can also introduce some nasty bugs!

if (cond) { return ptr ;} /* C-L1 & C-L4 violations */
while (cond) { /* OK */

do_something ();
}
if (cond)
{ /* C-L4 violation */

...
} else { /* OK */

...
}
if (cond) { /* OK */

...
} /* C-L4 violation */
else {

...
}
if (cond) /* Tolerated */

return ptr;
int print_env (void) /* OK */
{

...
}
int print_env (void) { /* C-L4 violation */

...
}
struct coords { /* OK */

int x;
int y;

};
struct coords
{ /* C-L4 violation */

int x;
int y;

};

Even though this primarily applies to the contents of functions, this rule also applies to
code outside functions, including header files’.

15

https://en.wikipedia.org/wiki/Unreachable_code#goto_fail_bug

C-L5 - VARIABLE DECLARATIONS

Variables must be declared at the beginning of the function.
Only one variablemust be declared per statement.

The for control structures may also optionally declare a variable in their initialization part.

Nothing prevents you from declaring and assigning a variable on the same line.

long calculate_gcd (long a, long b)
{

long biggest , smallest ; /* C-L5 violation */

biggest = MAX(a, b);
smallest = MIN(a, b);
long rest; /* C-L5 violation */
while (smallest > 0) {

rest = biggest % smallest ;
biggest = smallest ;
smallest = rest;

}
return a;

}

int main(void)
{

int forty_two = 42; /* OK */
int max = 12; /* OK */

for (unsigned int i = 0; i < max; i++) { /* OK */
calculate_gcd (forty_two , max);

}
return 0;

}

16

C-L6 - BLANK LINES

A blank line must separate the variable declarations from the remainder of the function.
No other blank lines must be present in the function.
int sys_open (char const *path)
{

int fd = thread_reserve_fd ();
struct filehandler * fhandler = NULL;

/* OK */
if (fd < 0) {

return -1;
}
if (fs_open (path , & fhandler)) {

thread_free_fd (fd);
return -1;

}
/* C-L6 violation */

thread_set_fd_handler (fd , fhandler);
return fd;

}

No blank line is necessary if there are no variable declarations in the function.

17

C-V - VARIABLES AND TYPES

C-V1 - NAMING IDENTIFIERS

All identifier names must be in English, according to the snake_case convention (meaning it is composed
exclusively of lowercase, numbers, and underscores).

The type names defined with typedef must end with _t.
The names ofmacros and global constants and the content of enumsmust be written in UPPER_SNAKE_CASE.
define IS_PAGE_ALIGNED (x) (!((x) & (PAGE_SIZE - 1))) /* OK */
enum arch { /* OK */

I386 = 0,
X86_64 ,
ARM ,
ARM64 ,
SPARC ,
POWERPC ,

};
const float PI = 3.14159; /* OK */
typedef int age; /* C-V1 violation */
typedef struct int_couple pixel_t ; /* OK */

Abbreviations are tolerated as long as they significantly reduce the name length without
losing meaning.

C-V2 - STRUCTURES

Variables can be grouped together into a structure if and only if they form a coherent entity.
Structures must be kept as small as possible.
struct person { /* OK */

char *name;
unsigned int age;
float salary ;

};

struct data { /* C-V2 violation */
struct person player ;
unsigned int width;
unsigned int length ;
unsigned int score;
int i;

};

18

C-V3 - POINTERS

The asterisk (*) must be attached to the associated variable, with no spaces in between.
It must also be preceded by a space, except when it is itself preceded by another asterisk.
This includes using the asterisk to declare or dereference a pointer.

When used in a cast, the asterisk must have a space on its left side, but not on its right side.
int *a; /* OK */
int* a; /* C-V3 violation */
int*a; /* C-V3 violation */
char ** argv; /* OK */
char ** argv; /* C-V3 violation */
char * *argv; /* C-V3 violation */
char ** argv; /* C-V3 violation */
int a = 3 * b; /* OK */
int strlen (char const *str); /* OK */
int strlen (char const * str); /* OK */
char * my_strdup (char const *str); /* OK */
char* my_strdup (char const *str); /* C-V3 violation */
my_put_nbr (* ptr); /* OK */
my_put_nbr (* ptr); /* C-V3 violation */
(int *) ptr; /* OK */
(int *) ptr; /* C-V3 violation */
(int*) ptr; /* C-V3 violation */
void (* func_ptr)(int) = &func; /* OK */
(* func_ptr)(42); /* OK */

This rule applies only in the pointer context.

19

C-C - CONTROL STRUCTURES
Unless otherwise specified, all control structures are allowed.

C-C1 - CONDITIONAL BRANCHING

A conditionnal block (while, for, if, else, . . .)must not contain more than 3 branches.

Arrays of function pointers and switch instructions are very useful when you want to
have numerous different behaviours that can result from the check of an element.
Take care to choose the most suitable one.

Nested conditional branches with a depth of 3 or more must be avoided.

If you needmultiple levels of branches, you probably need to refactor your function into
sub-functions.

if (...) { /* OK */
do_something ();

} else if (...) {
do_something_else ();

} else {
do_something_more ();

}

if (...) {
do_something ();

} else if (...) {
do_something_else ();

} else if (...) {
do_something_more ();

} else { /* C-C1 violation */
do_one_last_thing ();

}

while (...) { /* OK */
if (...) {

do_something ();
}

}

while (...) { /* C-C1 violation */
for (...) {

if (...) {
do_something ()

}
}

}

20

else if branching does not add one, but two levels of depth, as it is considered to be an
if inside an else.

// This code ...
if (...) {

do_something ();
} else if (...) {

do_something_else ();
} else if (...) { /* C-C1 violation */

do_one_last_thing ();
}

// ... is unfolded as this
if (...) {

do_something ();
} else {

if (...) {
do_something_else ();

} else {
if (...) { /* C-C1 violation */

do_one_last_thing ();
}

}
}

// This code ...
if (...) {

do_something ();
} else if (...) {

while (...) { /* C-C1 violation */
do_something_else ();

}
}

// ... is unfolded as this
if (...) {

do_something ();
} else {

if (...) {
while (...) { /* C-C1 violation */

do_something_else ();
}

}
}

21

C-C2 - TERNARY OPERATORS

The use of ternary operators is allowed as far as it is kept simple and readable, and if it does not obfuscate
code.

You must never use nested or chained ternary operators.
Youmust always use the value produced by a ternary operator (by assigning it to a vari-
able or returning it for example).

parity_t year_parity = (year % 2 == 0) ? EVEN : ODD; /* OK */
return (a > 0 ? a : 0); /* OK */
unsigned int safe_sum = is_sum_overflow (a, b) ? 0 : a + b; /* OK */
char * result = is_correctly_formatted (str) ? str : format (str); /* OK */
int a = b > 10 ? c < 20 ? 50 : 80 : e == 2 ? 4 : 8; /* C-C2 violation */
already_checked ? go_there () : check (); /* C-C2 violation */
first () ? second () : 0; /* C-C2 violation */

C-C3 - goto

Using the goto keyword is forbidden, because it can very quickly participate in the creation of infamous
spaghetti code, which is completely illegible.

22

C-H - HEADER FILES

C-H1 - CONTENT

Header files must only contain:

• function prototypes,
• type declarations,
• structure declarations,
• enumeration declarations,
• global variable/constant declarations,
• macros,
• static inline functions.

All these elements must only be found in header files, and thus not in source files.

Including a header from another header is allowed as long as the header file itself needs
it.
If a source file requires it, but not the header file itself, it should then be included in the
source file instead.

C-H2 - INCLUDE GUARD

Headers must be protected from double inclusion.
The method and the conventions used are left free.

C-H3 - MACROS

Macros must match only one statement, and fit on a single line.
define PI 3.14159265358979323846 /* OK */
define DELTA (a, b, c) ((b) * (b) - 4 * (a) * (c)) /* OK */
define PRINT_NEXT (num) {num ++; printf ("%d", num);} /* C-H3 violation */
define ERROR_MESSAGE " Multiline macros " \

" have to be avoided " /* C-H3 violation */

Using a macro to shorten a long expression is rarely a valid reason to use a macro:
// Unnecessary and obfuscates the code
define WIN (data ->object ->scene ->state -> window)

23

C-A - ADVANCED

C-A1 - CONSTANT POINTERS

When creating a pointer, if the pointed data is not (or should not be) modified by the function, it should be
marked as constant (const).

C-A2 - TYPING

Prefer themost accurate types possible according to the use of the data.
int counter ; /* C-A2 violation */
unsigned int counter ; /* OK */
unsigned int get_obj_size (void const * object) /* C-A2 violation */
size_t get_obj_size (void const * object) /* OK */

Useful types include size_t, ptrdiff_t, uint8_t, int32_t, and more. . .

C-A3 - LINE BREAK AT THE END OF FILE

Files must end with a line break.

∇ Terminal - + x
∼/Epitech Documentation> cat -e correct.c
int main(void) {$

return 0;$
}$
∼/Epitech Documentation> cat -e incorrect.c
int main(void) {$

return 0;$
}

The reason for this is tied to the POSIX’s definition of a line:

A sequence of zero or more non- <newline> characters plus a terminating <newline> character.

The Open Group Base Specifications Issue 7, 2018 edition

24

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap03.html#tag_03_206

C-A4 - static

Global variables and functions that are not used outside the compilation unit to which they belong should
bemarked with the static keyword.

Be careful not to confuse the different uses of the static keyword. It does very different
things depending on where you use it.

25

	C Coding Style
	C Coding Style
	Banana
	Using Banana
	Banana source repository

	C-O - Files organization
	 C-O1 - Contents of the repository
	 C-O2 - File extension
	 C-O3 - File coherence
	 C-O4 - Naming files and folders

	C-G - Global scope
	Multiline statements
	 C-G1 - File header
	 C-G2 - Separation of functions
	 C-G3 - Indentation of preprocessor directives
	 C-G4 - Global variables
	 C-G5 - include
	 C-G6 - Line endings
	 C-G7 - Trailing spaces
	 C-G8 - Leading/trailing lines
	 C-G9 - Constant values
	 C-G10 - Inline assembly

	C-F - Functions
	 C-F1 - Coherence of functions
	 C-F2 - Naming functions
	 C-F3 - Number of columns
	 C-F4 - Number of lines
	 C-F5 - Number of parameters
	 C-F6 - Functions without parameters
	 C-F7 - Structures as parameters
	 C-F8 - Comments inside a function
	 C-F9 - Nested functions

	C-L - Layout inside a function scope
	 C-L1 - Code line content
	 C-L2 - Indentation
	 C-L3 - Spaces
	 C-L4 - Curly brackets
	 C-L5 - Variable declarations
	 C-L6 - Blank lines

	C-V - Variables and types
	 C-V1 - Naming identifiers
	 C-V2 - Structures
	 C-V3 - Pointers

	C-C - Control structures
	 C-C1 - Conditional branching
	 C-C2 - Ternary operators
	 C-C3 - goto

	C-H - Header files
	 C-H1 - Content
	 C-H2 - Include guard
	 C-H3 - Macros

	C-A - Advanced
	 C-A1 - Constant pointers
	 C-A2 - Typing
	 C-A3 - Line break at the end of file
	 C-A4 - static

